UNCLASSIFIED

AD NUMBER		
AD143999		
NEW LIMITATION CHANGE		
TO Approved for public release, distribution unlimited		
FROM Distribution: NOFORN.		
AUTHORITY		
NRL ltr. Ser 5300/62, 28 Mar 1996		

UNCLASSIFIED

AD NUMBER

143 999

CLASSIFICATION CHANGES

TO

UNCLASSIFIED

FROM

CONFIDENTIAL

AUTHORITY

USNRL Ltr., 16 Aug 1967

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED 14399

DEFENSE DOCUMENTATION CENTER

+74

SCIENTIFIC AND TECHNICAL INFORMATION.

CANERON STATION ALEXANDRIA VIOLENTA

FROM CONTIDENTIAL PER AUTHORITY LISTED IN

UNCLASSIFIED

patented investing the engine of any may in related thereto.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

CONTENTS

Abstract Problem Status Authorization	n n
BYTRODUCTION	1
LOCATION	1
RADAR SYSTEM CHARACTERISTICS	2
AUXILIARY EQUIPMENT	3
MEASUREMENT METHODS	3
other measurements	8
DATA PROCESSING	5
PRESENTATION OF RESULTS	7
SIGNIFICANCE OF RESULTS	7
APPENDER - Graphs of Results	•

5711 44253

ABSTRACT [Confidential]

A high-resolution radar system (0.008-microsecond pulse length), operating at 3-cm wavelength, has been used in oceanographic studies from a coastal site. Sea return thater amplitudes are presented from A-scope data recorded on 18-mm motion picture film. System parameters and data reduction methods and equipment are outlined.

PROBLEM STATUS

This is an interim report; work on this problem is continuing.

AUTHORIZATION

NRI Problem R07-17
Projects NR 412-000, NR 413-003, NL 439-014-1,
NO 051-631, and NE 050-416
Buroau Nos. EL-43001, 5-1872, and B4(-246-8-56

Manuscript submitted June 12, 1957

HIGH-RESOLUTION RADAR P'RT II - SEA CLUTTER MEASUREMENTS [Unclassified Title]

INTRODUCTION

This report is one of a series in the study of sea return with high-resolution radar. It presents the results derived from a photographic method of data recording.

Sea return clutter measurements were made with an experimental, high-resolution, X-band radar system from a coastal site at Boca Raton, Florida, during the period of Octob : 1955 to December 1955.

The experiments were conducted to investigate the characteristics of high-resolution radar schoes as they pertained to sea return. The variation of signal amplitude with pular ration, range, azimuth angle, axtenna height, sea condition, and wind speed and direction were resential factors to be considered in the tests.

I. a report presents some of the results obtains from the analysis of A-scope photo-raphic data.

LOCATION

The test site on the east coast of Florida at Boca Raion afforded relatively deep ocean depths at short range as shown in Fig. 1.

The radar antenna was mounted on an elevator platform suspended from a steel tower 100 feet high (Fig. 2). This platform could be varied in height from 37 feet to 113 feet above the sea level. Its coverage was more than adequate to embrace the ocean area under surveillance. Vertical depression angle segreat as six degrees were possible.

The view toward the ees by the radar antenna was unobstructed from 5 degrees to 170 degrees true bearing.

The prevailing winds in this area are usually from the east. It was hoped (in vain) that extreme cond"one of sea and wind would be encountered é ring one or more days of the test period because of the normal "huricane season" expected at that time in that area.

The average tidal change at this location was about three feet.

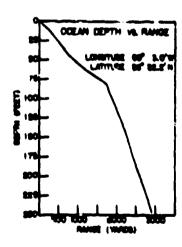


Fig. 1 - Ocean depth versus range

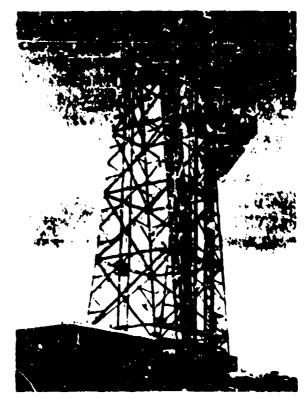


Fig. 2 - Elevator platform and tower

RADAR SYSTEM CHARACTERISTICS

Listed below are some of the pertinent characteristics of the experimental radar system used in the measurements:

Frequency	9375 Mc
Transmitter Power (Peak)	15 kw
Pulse Length	0. 008 µsec
Pulse Recurrence Rate	1800 cps
Receiver Noise Figure	25 db
Polarisation	ve-ical or horisonta
Antenna	8-foot parabola
Antenna Reamwidth	0. 9°
Video Bandwidth	100 Mc
I-F Paseband	2500 to 2700 Mc
Dieplay	A- or R-scope

The antenna, transmitter, rf amplifier, and mixer were located on the movable platform and the i-i and video amplifiers, timing, display, and recording equipment located in a U.S. Navy trailer van positioned at the base of the radar tower.

AUXILIARY EQUIPMENT

There were two additional pieces of equipment used in these experiments to acquire supplementary "st "

- An I/UMQ-5 wind measuring and recording system was used to acquire meteorological information. The vane and anemometer were mounted atop the radar tower at a height of approximately 125 feet above sea level. The visual indicators and the simultaneous sutomatic recorder were located in the radar ran. The recorder chart provided a continuous log of the wind speed and direction for each twenty-four hour period.
- 2. An ocean wave-height measuring gage of the step resistance type, which was developed by the Beach Erosion Board, was located at a range of 450 yards i.om the test site and at a bearing of 95 degrees. It was mounted on a paling Criven into the ocean floor where the depth of the water was approximately 35 feet. Automatic, as well as manual, control of the wave gage permitted convenient monitoring of wave height. A Brush recorder located in the radar van pro ided permanent records of this information. Wave-height information was automatically registered on the chart paper for periods of two minutes of each hour of every day. This sample portrayed the sea-state condition and tended to indicate the prevailing trend. During data taking periods, the wave gage recorder was frequently run under manual control to acquire coincidat wave and radar information.

MYABUREM ENT METHODS

This is not presents the results derived from Assence date on sea return clutter, as recorded on 16-mm motion picture film.

A modified Ball and Howall, 16-mm, magazine load, motion-picture camera was used to photograph the radar video of trut on a delayed A-ecopo display under the following conditions:

Casnera Speed

fram. s per second

Shutter

120°

Exposure Time

1/15 sec

Kodak TRI-X

Lens and Aperture 1" - 12.7

CRT Physicher

P-11

Sach fifty-foot film magaza... was identified at the beginning of the reel by projecting, via a mirror, a semiautomatic data-recording board onto the film.

The basic reference of radar erea used in these measurements was obtained from a balloon-suspended, metal sphere, flying under free-space conditions. The radar reflection area of this sphere was C. 018 square meter.

Because the use of such a sphere was not convenient nor fearible for all periods of the radar system operation, a corner reflector was, therefore, used as the standard echoing area throughout the tests. This corner reflector was designed and constructed for a reflection area of 93 square feet under free-space conditions and when measured as located with the metal sphere as the computation base, an echoing area of 360 square feet was realized. The corner reflector was located on the beach at a range of 1340 yards, and was approximately 9 feet above the ground level.

The performance and stability of the radar system was monitored at the beginning and end of each data-recording period for both horizontal and vertical antenna polarizations with this corner reflector as the standard echoing area. Reference information and power calibration of the radar system was photographed at frequent intervals during the data runs using the calibrated output from a Hewlett-Packard, Model 620A, signal generator.

With this combination of the corner reflector standard signal and the film-recorded, radar-system power calibration, the sea-return echo area was computed in square feet. The peak power received from the corner reflector is given by

$$P_{e} = \frac{P_{e}}{4\pi^{3}} \frac{G^{2} \sqrt{3} \sqrt{e}}{4\pi^{3} / R_{e}/4}$$

where

Pt - Peak transmitter power

G - Antenna gain

Transmitter wavelen, th

ce. Corner reflecting area in square feet

R. . Range to the corner.

The neak power received from the sea clutter to

vitn

-. Radar :rea per sample of sea clutter (sample length, 1/15 sec; sample rate, 5 per second)

R. . Range in feet to sumple area.

By dividing F. by P.

$$\frac{P_{\bullet}}{P_{c}} : \left(\frac{c_{\bullet}}{\gamma_{c}}\right) \left(\frac{R_{c}}{R_{\bullet}}\right)^{4}$$

οr

$$\sigma_{\phi} = \left(\frac{P_{\phi}}{P_{c}}\right) \left(\frac{R}{R_{c}}\right)^{4} \sigma_{c}$$

In this equation,

 $\frac{P_m}{P}$ may homeasured by comparison with signal generator (HP-6.30A):

 $\left(\frac{R_v}{R_r}\right)^4$ is obtained from radar data;

is the corner reflector area as located 360 ft2.

To obtain a unit radar area:

9 0

where

". Echoing area per unit area

R - Radar range in feet

- Antenna beamwidth in rudians

e - Equivalent transmitter pulse length

In presenting the results 10 $\log_{10^{-7}a}$ is plotted versus several parameters.

OTHER MEASUREMENTS

Movie cameras were located adjacent to the radar antenna on the movable platform and atop the steel tower for simultaneous visual photographs of the radar area under surveillance. These cameras were equipped with telephoto lenses whose focal length was chosen to give an azimuth angular coverage as close to that of the radar antenna beamwidth as possible. The operation of these cameras was electrically synchronized to that of the scope data camera.

Azimuth scan of the antenna waveguide feed provided facilities for a B-scope presentation on the radar indicator. Synchronized, impulse-operated cameras, triggered at the antenni-scan motion extremities, were used for the data recording of both the radar indicator and the visual information.

Other methods of data recording employed during these experiments were the une of a Fairchild 35-mm continuous-film camera for sampling of the radar cluster amplitude at the radar-recurrence frequency and a Brush recording-pen system for radar-signal measurements of very short range segments. These latter systems are discussed in a separate report.

DATA PROCESSING

To facilitate extraction of the data portrayed on the 16-mm motion picture film, a film reader was designed and constructed which, when used with suitable counting units, provided a simple and quick method for Jata readout.

The use of small phototransistors so the sensitive elements in the film reader permitted the film-projection distance to be approximately 24 inches. The size of the projected image at this distance was approximately 4 inches wide by 3 inches high.

The use of the words "visual photographs" in the text of this report refers to outdoor photography that is recorded of the area which the radar entenna would "see" from an optical viewpoint. This serves to differentiate it from the other and more specific data recording photography of the radar-scope traces.

A total of 16 phototransistors (WE 1740) were mounted side by side in a holder attached to a 4-inch by 3-inch projection surface. A 1/32-inch slit cut through this surface allowed the most sensitive portion of each phototransistor to be exposed. This created a sensitive slit 1/32 inch wide by approximately 2 inches long for the 16 elements.

About 1.2% of the total range sweep was resolved thiough the 1/32-inch slit and the rather echo amplitude could be monitored at any one of the 16 levels represented by the 16 adjacent photocells.

Shown in Fig. 3 is a sketch of the photocell holder and projection surface in which "A" represents the sixteen cells positioned side by side with the 1/32-inch slit allowing a portion of the sensitive area to show "Chaugh. By includial adjustment of each photocell, the most responsive portion of the photocell window was positioned in line with the slit.

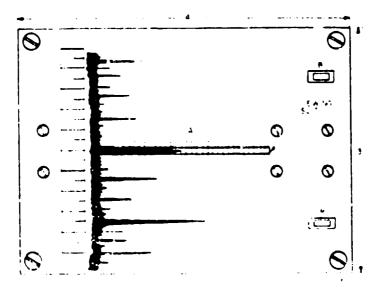


Fig. 3 - Photoccil holder

The photocella as indicated by "B" served to de-energize the reader during the projector shutter time, as well as to compensate for variations in film densities.

In the figure "\color represents a typical, projected, A-scope, sea return, radar trace. When an echo interrupted the projected light falling on a particular photocell a pulse was generated, its cell position identifiable by its width. If an echo should be received of an amplitude to interrupt the eleventh cell, for example, all cells up through eleven would be energized. However, by the use of a suitable mixing process, only the widest pulse was used to actuate the decade-counting and tabulating circuit. Thus, the film reader was used to count all echoes which were equal to or greater than a preset level as determined by the position of the selected photocell.

The particular photocells monitored for each data run were selected by first projecting the system calibration run onto the reader. As the calibration run was made in 3-db steps, the dynamic range of the system would indicate some five to seven cells to be monitored.

From the information gathered with this system, curves were drawn of the percentage of time that the echoes at some particular range were at least equal to the signal level in db from the calibration curve. This basic data was then extended to portray the information shown in the Appendix.

The data presented was extracted from delayed, CRT sweep lengths of 250 yards. The majority of the information was acquired in one-minute data-recording runs, though a few data runs of two minutes duration were available.

PRESENTATION OF RESULTS

Listed below is a short description and sequence of the graphical analysis derived from the A-scope photographic data reduction. The graphs are presented in the Appendix.

- I ..., versus declination angle in degrees for signal returns of 2% to 15%.
- B. Superfice percentage of time for three wind speeds.
- III. ... versus percentage of time for three ancenna heights.
- IV. . . versus percentage of time for into-the-trough and into-the-waves of three artenna heights.
- V. . . . versus declination angle in degrees for two wave heights.
- VI. ... versus declination angle in degrees for three wind speeds.
- VII. ... versus wird speed for signal returns of 2% to 15%.

SIGNIFICANCE OF RESULTS

No attempt is made in this report to evaluate the significance of the results of the work presented, since it is planned in a subsequent report, in this correstion high-resolution radar studies, to show comparisons with longer-pulse radar systems and other wor! In the field.

APPENDEK Graphs of Results

In Figs. At through A4 and Figs. A15 and A16, the shaded boundaries of the plot indicate a - variance from 2% to 15%. To state this in other words: the upper limit of the shaded section indicates - values for 2% of the total data sample and the 'wer limit of the shaded section indicates - values for 15% of the total data sample.

In Figs. A5 through A10 \odot_{π} is plotted versus the percentage of time that it equals or exceeds a particular value of \odot_{π} . For example, at a point of 30% in Fig. A6 and at a wind speed of 16 knots, the graph indicates that with vertical polarization we may expect \odot_{π} to be -32 db or less for 30% of the time.

The composition of these graphs is a result of an averaging of many points, and the lines closely follow and portray the trend of the basic data

The values indicating wave height for each graph were extracted from the wave-gage records. The value selected was the "third high" value prevailing in the wave-height-period sample nearest in time to the photographic radar data."

The declination angle 2 as indicated in the graphs is that angle whose tangent is indicated by the quotient of the height of the antenna above average water to the range of the target.

According to the Beach Erosion Board procedure for analysis of wave-gage data, the time in seconds of the wave period of the data indicates "approximate significant wave heights" as the "third highest." Therefore, the wave amplitudes were tablulated from the recorded data and the third highest value selected as the representative one to be used in the report

L ., Versus :

Figures A1 through A4 show the \sim_a plotted versus declination angle in degrees. The shaded area defines the boundaries of \sim_a from 2% to 15% of the total time of the data run. Significant wave heights are between 1.25 and 2.0 feet.

Fig. Al - Into the waves; polarization vertical, azignuth 150°, wave height 1.75 feet, wind 9-10 knots, 150°

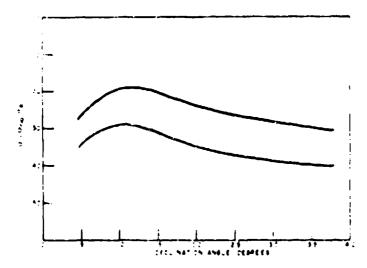


Fig. A2 - Into the waves: polarisation horisontal, asimuth 150°, wave height 1.75 to 2.0 feet, wind 9 - 10 knote, 160° + 170°

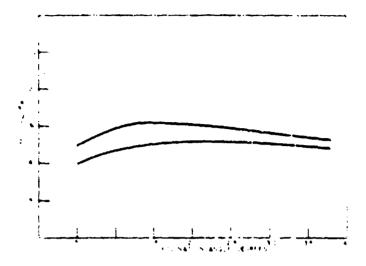


Fig. A3 - Into the trough, polarization vertical, azimuth 45°, wave height 1.70 feet, wind 8-10 knote, 150° - 155°

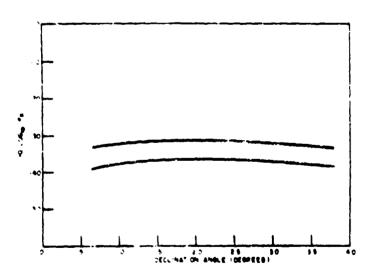
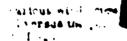



Fig. A4 - Into the trough; polarization horizontal, asimuth 45°, wave height 1.75 to 2.0 feet, wind 9 knots, 160° - 165°

U. . Versus & Time

Figures A5 and A6 depict the varia and horizontal polarizations. The amplitue radar echo equaled or exceeded a par

The data sampled to provide these plots was water with significant wave heights varying from looking in the direction of the apparent wave soutaken at ranges of 450 yards, 500 yards, 1000 ye 2500 yards.

the cu. e.s., sould be considered to the cu.

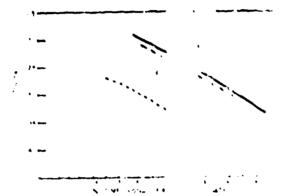


Fig. A5 - Polarization v 80° = 90°, wave height 3. 70° = 90°, height 90 feet

: il, azımuth 3.4 feet, wand

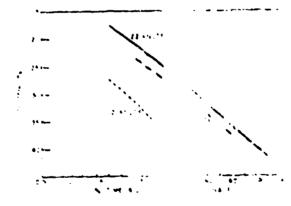
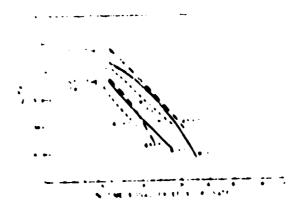


Fig. A6 - Polarisation 80° - 90°, wave height ' 70° - 90°, height 90 feet

erid, ssimult.

The Staur to Se

tyramine சிறிப்பு நெறிப்படி நக்கு பெழுக்கு நிறையாக நிறிப்படு பெறிப்படு பெறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்பு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு நிறிப்படு


The consideration is to the transfer of the constraint of the cons

[2] A. S. Martin, Phys. Lett. 19, 124 (1997), and the state of the

with series them to 1 to men to 2 d tees

Fg. A10 - Polarization horizontal, assemble 150° and 45°, case height 1.75 to 2 feet, wind 9 - 10 knote, 150° - 165°

V v, Verent i

Figures All and All depict for vertical and he risental polarizations r_a versus the decimeran angle in degrees as a function of wate adjust. The curves were plotted from radar othe recurrences of 3 5 of the tidal sample. The attitude of the recur antenna was looking in the direction of the apparent wave source and the information used in assembling this graph was taken at heights of 40 feet, 63 feet, and 90 feet above average water.

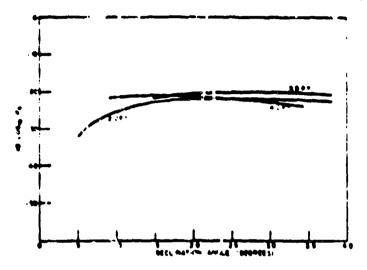


Fig. All Priorisation vertical

Fig. A12 - Polaries; in horizontal

VI Versus

Figures A13 and A14 present the ... versus the declination angle in degrees as a function of wind speed in knots for vertical and horizontal polarizations. The curves were drawn from signal recurrences of seven percent of the fotal sample. The data was assembled at ranges of 500 yards, 1000 yards, and 1500 yards with antenna elevations of 33 feet, 40 feet, 43 feet, 64 feer, and 80 feet above average water. The antenna was looking in the direction of the upparent wave source with significant wave heights ranging from 1.75 feet to 3.5 feet.

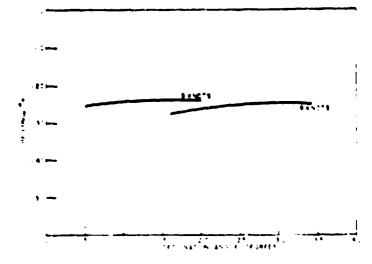


Fig. Al3 - Polarization vertical

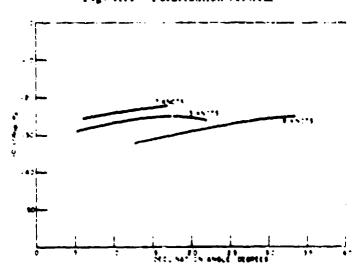


Fig. Al4 - Polarisation horizontal

VII. ... Versus Wind Speed

Figures A15 or 1620 persons the variation of the wind velocity to their horizontal and vertices publicated one. The officer postures here spain the text of signal source of 225 to the spain the total time complet. The automost personal condition the similar for both polarisations and the data was personal cases from range spicifies at 350 yards. 1000 months, 1000 pards, and 1000 parts.

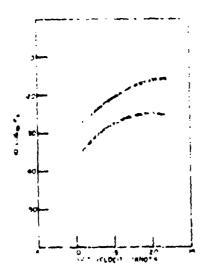
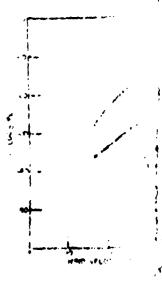



Fig. 315 ~ Polariz tion control, as 100% wave height \$ 25 to 5 0 fans, windership 90 feet

Fig. 416 - Polesisation horizontal, assessible of wave height 3.25 feet, wind 80° - 90°, noight Coet

ERRATA

Ser 5300/62 28 March 1996

memorandum

Reder Division

To:

Code 5227

Via:

Code 1221

From:

Code 5301

Subj:

NRL Reports 4951, 4952, Relaxation of Distribution Statement

1. The subject reports do not contain material which should be restricted under current guidelines. Current investigation into backscatter phenomena of this type are published in the open literature and as NRL publication intended for unlimited distribution. The distribution statement on the subject reports may be changed to allow public release.

AD-143-473

Edward F. Main

EDWARD E. MAINE

Acting Associate Superintendent

Radar Division

ERRATA.

Completed 20 mar 2000